On the Kung-Traub Conjecture for Iterative Methods for Solving Quadratic Equations

نویسنده

  • D. K. R. Babajee
چکیده

Kung-Traub’s conjecture states that an optimal iterative method based on d function evaluations for finding a simple zero of a nonlinear function could achieve a maximum convergence order of 2d−1. During the last years, many attempts have been made to prove this conjecture or develop optimal methods which satisfy the conjecture. We understand from the conjecture that the maximum order reached by a method with three function evaluations is four, even for quadratic functions. In this paper, we show that the conjecture fails for quadratic functions. In fact, we can find a 2-point method with three function evaluations reaching fifth order convergence. We also develop 2-point 3rd to 8th order methods with one function and two first derivative evaluations using weight functions. Furthermore, we show that with the same number of function evaluations we can develop higher order 2-point methods of order r + 2, where r is a positive integer, ≥ 1. We also show that we can develop a higher order method with the same number of function evaluations if we know the asymptotic error constant of the previous method. We prove the local convergence of these methods which we term as Babajee’s Quadratic Iterative Methods and we extend these methods to systems involving quadratic equations. We test our methods with some numerical experiments including an application to Chandrasekhar’s integral equation arising in radiative heat transfer theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comment on: On the Kung-Traub Conjecture for Iterative Methods for Solving Quadratic Equations. Algorithms 2016, 9, 1

Kung-Traub conjecture states that an iterative method without memory for finding the simple zero of a scalar equation could achieve convergence order 2d−1, and d is the total number of function evaluations. In an article “Babajee, D.K.R. On the Kung-Traub Conjecture for Iterative Methods for Solving Quadratic Equations, Algorithms 2016, 9, 1, doi:10.3390/a9010001”, the author has shown that Kun...

متن کامل

A new optimal method of fourth-order convergence for solving nonlinear equations

In this paper, we present a fourth order method for computing simple roots of nonlinear equations by using suitable Taylor and weight function approximation. The method is based on Weerakoon-Fernando method [S. Weerakoon, G.I. Fernando, A variant of Newton's method with third-order convergence, Appl. Math. Lett. 17 (2000) 87-93]. The method is optimal, as it needs three evaluations per iterate,...

متن کامل

New Eighth-Order Derivative-Free Methods for Solving Nonlinear Equations

A new family of eighth-order derivative-freemethods for solving nonlinear equations is presented. It is proved that these methods have the convergence order of eight. These new methods are derivative-free and only use four evaluations of the function per iteration. In fact, we have obtained the optimal order of convergence which supports the Kung and Traub conjecture. Kung and Traub conjectured...

متن کامل

A new iterative with memory class for solving nonlinear ‎equations‎

In this work we develop a new optimal without memory class for approximating a simple root of a nonlinear equation. This class includes three parameters. Therefore, we try to derive some with memory methods so that the convergence order increases as high as possible. Some numerical examples are also ‎presented.‎‎

متن کامل

On a 4-Point Sixteenth-Order King Family of Iterative Methods for Solving Nonlinear Equations

A one-parameter 4-point sixteenth-order King-type family of iterative methods which satisfy the famous Kung-Traub conjecture is proposed. The convergence of the family is proved, and numerical experiments are carried out to find the best member of the family. In most experiments, the best member was found to be a sixteenth-order Ostrowski-type method.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Algorithms

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2016